Oct 27, 2005

A IQISHIQI quick match

Oshiqi mechanics with both players playing "x"s.
A player wins if 'o' reaches one of his edges.
Moving "o" to a corner wins.  Lose if unable to move.

          A                 B    A
abcdefghijklmnopqrstu      ---------
     . . . . . .        1.  q6  h5
    . . . . . . .       2.  i6  m10
B  . . . . . . . .  B   3.  h11 r7
  . . . . . . . . .     4.  f5  j11
 . . x x . . . . . .    5.  s8  f7
. . . . x . . . x . .   6.  j9  e10
 . x x . . . . . x .    7.  d7 wins
  . . . . . . . . x     8.
A  . . . x . . . .  A   9.
    x . o . x . .      10.
     . x x . . .       11.
abcdefghijklmnopqrstu
          B

Oct 24, 2005

Cross-Hairs

Definition:  A piece is on an enemy line if it belongs to a line of adjacent pieces (of either color or type) between two enemy pieces. A line similarly includes any sequence of adjacent edge cells.

RULES
1.  On each turn, each player must drop a friendly soldier on an empty cell adjacent to any stone AND then, optionally, move any soldier to an adjacent empty cell which is adjacent to any other piece. After each drop and after each move:
1.1   Any enemy soldier not on the edge and belonging to *two* enemy lines is replaced by a friendly King;
1.2   Any enemy soldier on the edge belonging to *one* enemy line is replaced by a friendly King;
1.3   This replacement only happens if the dropped/moved piece participates in one of those enemy lines;
1.4   Kings are never replaced and do not move.
2.  When all cells are occupied, the player with more Kings wins.

 abcdefghijklmnopq
     . . . . .     1
    . . . . . .    2
   . . . . . . .   3
  . . . . . . . .  4
 . . . . . . . . . 5
  . . . . . . . .  6
   . . . . . . .   7
    . . . . . .    8
     . . . . .     9
 abcdefghijklmnopq

Sample Game:

      ooo         xxx    
   ----------------------
1.  i5  --      j4  --    
2.  k3  --      g5  j4h4  
3.  f6  k3i3    k5  h4j4  
4.  e5  i3h4:   e7  --    
5.  l4  h4i3    m5  j4k3  
6.  l2  l4m3    d4  k3l4  
7.  n6  m3n4    c5  e7g7:
8.  l6  l2k3:   h6  l4j4:
9.  a5: f6e7    o7  h6j6  
10  h6: h6i6    h8  j6k7  
11. b4  e7d6:   j6: o7p6
12. q5  n6o7:   c7  g7e7
13. d8  a5b6:   a5  d4c3:
14. d2: d6f6    e9::j6h6
15. g9: d2e3    d6  e7g7:
16. e7  e3f4:   f8: h8i9:
17. h8  f4d4:   j8: h6j6
18. m7  q5o5    m3  i9k9
19. l2  d4f4    n6  m3o3:
20. n2  o5p4:   n8  k7l8:
21. g3  p4o5    q5: q5p4
22. q5: n2m1    h2  n8m9  
23. f2  i3j2    n2: n2m3
24. i1: n4l4    k1 m3n2:
25. n8: i1g1     resign

abcdefghijklmnopq  
    . o . @ #     1
   . o @ o o @    2
  @ . o . o . @   3
 # . o . @ o . @  4
@ @ # @ # @ @ o # 5
 # @ # . x # x @  6
  @ # @ # . # #   7
   # x # x x o    8
    @ # . x x     9
abcdefghijklmnopq


One possible variant would remove the edge rule, turning the board into a hex-torus. This has pros and cons, it simplifies the game but at the cost of some clarity (the board topology would become harder to grasp).

Oct 17, 2005

Pentaboard

There is a fairly nice pentagonal board available that is fully symmetric and thus useful for games requiring that. We used an asymmetric 5-sided board for our 5-Y game Gem:

         . . . . .
        . . . . . .
       . . . . . . .
      . . . . . . . .
       . . . . . . .
        . . . . . .
         . . . . .
          . . . .
           . . .
            . .
             .


There is no need to have a fully symmetric one, but it is possible. The board is:

         . . . . .
        . . . . . .      
       . . . . . . .
      . . . . . . . .    
     . . . . . . . . .    
      . . . 4 4 . . .    
       . . 3   3 . .
        . 2     2 .
         1       1


Which is just a dodecahedral cap. The "cut" is to join up so that equivalent cells are identified (the same number represents the same cell).

We can do the same for a heptagonal board...

        . . . . 1           1
       . . . . 2           2 .
      . . . . 3           3 . .
     . . . . 4           4 . . .
    . . . . 5           5 . . . .
     . . . . 6         6 . . . .
      . . . . 7       7 . . . .
       . . . . 8     8 . . . .
        . . . . 9   9 . . . .


Just as before, the numbers indicate identical cells. The centre spot is 5, and the whole thing is a symmetric heptagon with 5 dots per side and a 5-dot radius.

Oct 10, 2005

TORAX (part II)

Here is another Torax game, where the blocker wins, but only after much more fight (the board is also larger):

 1. c3g7  b3h7
 2. b7h3  adopt

a   b   c   d   e   f   g   h   i    
---------------------------------    
.   .   .   .   .   .   .   .   .    1

.   .   .   .   .   .   .   .   .    2

.   O   O   .   .   .   .   O   .    3

.   .   .   .   .   .   .   .   .    4

.   .   .   .   .   .   .   .   .    5

.   .   .   .   .   .   .   .   .    6

.   O   .   .   .   .   O   O   .    7

.   .   .   .   .   .   .   .   .    8

.   .   .   .   .   .   .   .   .    9

 3.   e5      e2  
 4.   f2      f3  
 5.   e3      e4  
 6.   f4      g4  
 7.   d2      d3  
 8.   g3     d3e2
 9.  e3f2    e4f3
10.  f4g3     g2  
11.   b5      e7
12.   g5      h5
13.   h4      i4
14.   i5      d5
15.   c5      c6
16.   d4     d5e4
17.  d4e3    f3g2
18.   g1      h1
19.   h9      f1
20.  f2g1     f9
21.   a7      a6
22.   i6      i7
23.  i6a7     a8
24.  h4i5     i9
25.   d6     c6d5
26.   b8     a8b7
27. resign

 a   b   c   d   e   f   g   h   i      
 ---------------------------------    
 .   .   .   .   .   O  _X   O   .    1
                      _/              
 .   .   .   X  _O  _X  _O   .   .    2
              _/  _/  _/              
 .   O   O   O  _X  _O  _X   O   .    3
              _/  _/  _/              
 .   .   .   X  _O   X   O   X_  O    4
              _/               \_      
 .   X   X  _O   X   .   X   O   X    5
          _/                          
 O   .   O   X   .   .   .   .   X_   6
_                                  \  
 X  _O   .   .   O   .   O   O   O    7
  _/                                  
 O   X   .   .   .   .   .   .   .    8
                                      
 .   .   .   .   .   O   .   X   O    9

Oct 4, 2005

TORAX

1. Initially both play one or more blocks (O) per turn, or else adopt Blocker. After adoption, the other (X) starts the alternating moves.
2. Alternating play continues as at Quax.
3. The game ends when X has made a connected global loop in any direction; or until this is impossible.

The game has two distinct phases. First there is a poker-like game, where both player drop blocking pieces until one of them accepts the task of Blocker. Secondly, there is a race of connection vs. blocking which, eventually decided if the first phase goes too far. Here is an example of it:

1. d3     b5
2. f5     c4
3. a1     b4
4. b1     adopt block

a   b   c   d   e   f    
---------------------  
O   O   .   .   .   .  1

.   .   .   .   .   .  2

.   .   .   O   .   .  3

.   O   O   .   .   .  4

.   O   .   .   .   O  5

.   .   .   .   .   .  6

The game is quickly decided:

5. e4     d5
6. e5     e6
7. d6     d5e6  
8. e1     e2
9. resign

a   b   c   d   e   f    
---------------------  
O   O   .   .   X   .  1
                        
.   .   .   .   O   .  2
                        
.   .   .   O   .   .  3

.   O   O   .   X   .  4

.   O   .   O_  X   O  5
              \_
.   .   .   X   O   .  6