Pentaboard
There is a fairly nice pentagonal board available that is fully symmetric and thus useful for games requiring that. We used an asymmetric 5-sided board for our 5-Y game Gem:         . . . . .
        . . . . . .
       . . . . . . .
      . . . . . . . .
       . . . . . . .
        . . . . . .
         . . . . .
          . . . . 
           . . .
            . .
             .
There is no need to have a fully symmetric one, but it is possible. The board is:         . . . . .
        . . . . . .      
       . . . . . . .
      . . . . . . . .     
     . . . . . . . . .    
      . . . 4 4 . . .     
       . . 3   3 . .
        . 2     2 .
         1       1
Which is just a dodecahedral cap. The "cut" is to join up so that equivalent cells are identified (the same number represents the same cell).
We can do the same for a heptagonal board...        . . . . 1           1
       . . . . 2           2 .
      . . . . 3           3 . .
     . . . . 4           4 . . .
    . . . . 5           5 . . . .
     . . . . 6         6 . . . .
      . . . . 7       7 . . . .
       . . . . 8     8 . . . .
        . . . . 9   9 . . . .
Just as before, the numbers indicate identical cells. The centre spot is 5, and the whole thing is a symmetric heptagon with 5 dots per side and a 5-dot radius.
No comments:
Post a Comment